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TECHNICAL NOTE k145

AN ANATYSTS OF THE OPTIMIZATION OF A BEAM RIDER
MISSILE SYSTEM

By Marvin Shinbrot and Grace C. Carpenter
SUMMARY

A transfer function is derived for a beam rider missile guidance
system which is opbimum when the target moves in & nonstationary way.
The effects of acceleration limiting are considered end a discussion of
the miss as a function of the various persmeters which determine 1t is
included. A form of design chart is presented which allows the immediate
determination of the optimum under any set of berget-missile conditions.

INTRODUCTION

With the recent progress in information theory and related techniques
for optimization of systems operating in the presence of noise have come
several applications of these optimization methods to the deslign of gulded
missile control systems (refs. 1 and 2). The results of these analyses
have been transfer functions which specify the system which is optimm
under the conditions assumed. The transfer functlons thus obtained appear
quite satisfactory, the mean-square miss distance assoclated with them
being reasonably smell and the functions themselves belng not of an
unrealistic form.

In order to arrive &t their results, the suthors of references 1
and 2 used the classical Wiener theory (ref. 3). As is well known, in
order to apply the Wiener theory, it is necessary that the class of inputs
to the desired system be stationary. Now, real targets may or may not
maneuver in a nonstationary way. However this may be, one can easlly f£ind
examples to which the Wiener theory as originally concelived does not apply:
an example would be the case where the target maneuver consists of a step
in acceleration. In such a case, if the Wiener theory alone were available
as a tool to the designer, he probably would approximate the nonstationary
maneuver by a statlonary one. Thils implies that some improvement of such
systems might be expected if more general target motions ~ ones involving
no approximetion - could be considered.

A method which allows the optimum to be determined when the inputs
are not stationary was presented in references %, 5, and 6. It is the
purpose of this report to apply this method to the optimizaetion of & beam
rider control system. Our purpose here is exXemplary; although an optimum
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transfer function is presented, we shall be more interested here in
indicating how the method can be applied to missile problems than in
specifying an optimum one. Thus, the point of view of the preceding para-
graph will not be adhered to strictly. Although certain assumptions will
be made which simplify the work, the sltuations described here will be more
realistic than those of references 1 and 2. It should be stressed, how-
ever, that the methods of references 4, 5, and 6 are sufficlently powerful
that these assumptions can be eliminated

It might be of interest, while on the subject of assumptions, to
discuss one which is not made. In all the previous works on missile opti-
mization, it was assumed that the target end the missile move in one plane.
One may be certain, however, that if the pllot of a target bomber knows
this, he will do his best to assure that he does not remain in the same
plene as the missile. Consequently, we shall not mseke thls assumption:
the plane in which it will be assumed the target moves wlll have no invar-
iant relation to the missile's initial position and the flight path of the
missile will not be assumed to be planar at all,

The paper begins with a discussion of the optimum system and the
corresponding minimum error. It 1s shown that this system can never
actually achieve the indicated minimum miss, since in order to do so the
level of acceleration required of the missile would be impossibly high.

The effect of inmtroducing a side condition that the root-mean-square accel-
eration shall not exceed a preassigned value is then considered. By a new
method another system is derived; this system has the properties that its
rms acceleration remains below the given value while the miss corresponding
to it is, for a fairly wide range of limiting accelerations, only slightly
larger than the minimum miss. A brief discussion of this milss as a func-
tion of the parameters which determine it is then given.

SYMBOLS
& vertical acceleration of target, ft/sec®
ey acceleration of missile, ft/sec®
E root-mean-~-square mlss distence, £t
N Nyt }
Ny N noise amplitudes (magnitudes of spectral densitles at zero

e o frequency) in the directions of the coordinate axes, ftZsec

R : Jxo2+yb2+z02

t time measured from Instent of firing, sec
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to time at which target begins msneuver, sec

t* At, dimensionless time

T time at which missile velocity 1s so reduced it can no longer
capture target, sec

v horizontal speed of target, ft/sec

Xo3¥osZo  initial position of target, £t
Xp,¥ps2p  DPresent position of target, ft

Ko ZM present coordinates of missile, ft

Xy Vys 2y error due to noise In measuring target's position, £t

— 1/8
S

A 2)

" eiﬁ/a

The letter ¢ with subscripts attached will be reserved for correlation
functions, A bar over any quantity willl denote its average velue.

ASSUMPTIONS

Beam Rider

We shall assume Fflrst of &ll that the misslle it 1s desired to design
will be a beam rider. The source of the beam will be considered to be far
away from the target, so that as the target maneuvers the beam moves only
parallel to itself, without rotation.

Target Motion

It wlll be assumed here that the target is initially (i.e., at the
time of firing of the missile) flying with constant speed along some
straight line. At some time after firing, the target wlll maneuver. Due
to the difficulty of maneuverling a large bomber and the short time of
flight of most missiles, we shall assume that the pilot has time for butb
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one maneuver before the attack situatlon is over; for definiteness at this
time, we take this %o be a pitching meneuver’ in which the bomber either
climbs or dives at some constant acceleration which may or may not be the
maximum of which it is capable. We assume as an approximation that this
vertical acceleration leaves the bomber's forward velocity unimpaired, so
that the flight path 1s a parabols rather than a circle.

Select a coordinate system fixed In space with the X axis perallel
to the target's inltial veloclty vector and the origin at the initial
position of the missile., According to what has gone before, we have

yB = yO
ZB =
Zg + % a(t-t5)2 , b > %

where 14, denotes the time at which fthe bomber begins its maneuver.

The preceding equations represent a whole class of missile-bomber
combinations. If all the parameters, %5, V, &, etc., are given definite
values, a particular attack is defined. At this point, we assume that we
know approximately how far from the missile a target will usually be ini-
tially, how fast & modern bomber will be going, and how rapidly it can
accelerate. More precisely, it will be assumed that probability dlstri-
butions of the parameters X5, Yo, Zos V, and a are known. (As will be
seen, the entire distributions will not actually be needed, since only
the mesn-square values of these parameters will occur in the work.)

With Av denoting the average with respect to all parameters, we can
then compute the following correlation functions. (See ref. 4 for the
complete definition of these functions.)

Av[ (x+VE) (xo+VT) ]

Py (B57) .
Av(xo2) + Av(xoV) (t+1) + Av(VE)bT (1)

1Tt will be seen that the argument which follows remains unimpaired
1f the vertical plane in which we have assumed the target maneuvers 1is
rotated. Therefore, the analysis which follows will epply equally well
to sltuations wvhere the bomber turns or turns and dives, ete.
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If the initial poslition of the bomber 1ls umcorrelated with its veloclty,
and if, with respect to the missile's initial position, the bomber is as
likely to be going in one direction as another, we obtain Av(xoV)
Equation (1) then becomes

q’xBXB(t’T) = on + V3o

Similaerly,

(t,7) = v.°
Py Yo

To compute CPZBZB’ it is necessary to assume some probsbility dlstri-

bution for the time t, at which the target begins 1ts meneuver.

Although it is possible to make more realistlc assumptions, here we shall
insist that t5 1s equally likely to have any value between O and T, the
time at which the mlissile speed has fallen off so badly that it can no
longer reach the target. This assumption is not too unreaslistic since a
pilot who is temse will usually maneuver when +, is small; the more
composed will wait longer.

Knowing these things, we can now write down cperZB. Assume first
that 0 1< %. Then,

(pz,BzB(t)T) Av[ ZB(t) ZB(T) ]

iy
é‘-! Av¥[zg(t)zg(T) Jdt, (2)

where Av¥ denotes the average w:.‘bh respect to 2zg5 and a alone.
Equation (2) then gives

- ~ -
qJZBZB(t,-r) = %f Av*{ Zo + L a(t-tg)% l:zo + % a(-r-to)z:| } dty +
o)

1 b 2| 1M o«
EL/‘ Av*{ Z2g + a(t—'bo) Zo}d'bo + Ef Av (z02)d.‘to
A L ._

n|

M o

t

= 25" + oo (10t3r° =551+ 4°), for O<T <
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In deriving this result, we have, as before, assumed that Av(z a) =
It follows from equation (2) that Poyzy (t,T) Q%BZB(T,t) Hence,

@ZBZB(’G,T) = 252 + (10t312 - 5t%r+t°) , for T> %

120T

We define the correlation function of the bomber gB(t,T) as the sum
of the functions Q&BXB’¢&ByB’ end thzB' Thus,

9 (t,7) = B2 + VobT + 2 (1075 - 5t7% 4 1) (3)

for 0 <7< .

Tt is important to notice that the correlation function (3) depends

only on the mean-square values ﬁz; 532 and a®. This means that if the
plane in which the bomber's maneuver takes place is not vertical, the
resulting correlation function will have the same form. Thus, by choos-
ing &2 +to be the mean-square bomber acceleration over all possible orien=-
tatlons of the plane in which he maneuvers, we shall be consildering the
more general problem of a bomber, flying initlally on a straight line
course, maneuvering in some unknown directilon.

Noise

The measurements of target position will .presumsbly be made by radar
or some other device which will be subject to error. It will be assumed
that the noise is uncorrelated with the target motion and is "white."
Thus, the autocorrelation of the nolse will bé given in the x, ¥y, and z
directions, respectively, by

Q&NXN(t’T) Ny8(t-T)

(pyNyN(t’T.) Ny;(_tw)

cpZNZ (t,7) = Nz8(t-7)
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vhere Ny, Ny, and N, are constants, dependent upon the conflguration of

the target, and &(%-7) is the Dirac & function (ref. 7). We define the
correlation function of the nolse as the sum of these three functions:

@ (t57) = B (t-) (%)

wvhere N = Nx + Ny + Nj.

Inputs

The Iinputs to the missile consist of the sum of the target motion and
the noise in each direction. Now, in general, the attack may teke place
from any direction relative to the target, even though certaln directions
may be more probable than others. However, the radar only perceives
motions as if they occurred in a plane perpendicular to the beam. Thus,
the informstion sent the missile is not actual target motion, but the pro-
Jectlion of this motion onto such a plane. In an abtbtack from the beam with
the migsile and the target in the same horizontel plane, these two motions
coincide. In other situations, the effect of the deviation from a beam
attack is the spparent reduction of the target velocity and acceleration.
Thus, we may assume & beam attack by introducing the notlon of en spparent
target whose velocity and acceleration are less than that of the actual
target. -

Looked at another way, what we are saylng is that the procedure of
optimizing a beam rider may teke place as if the plane in which the tar-
get is moving were orthogonal to the beam. TIn the final answer, the val-

uves of V2 and a2 which should be used are the apparent values averaged
over all possible attack directlons rather than the true values.

OPTIMIZATTION

The Minimization Criterion

The over-all missile-beam system will generally be described by two
transfer functlions, one for the horizontal and one for the vertical direc-
tion. Although it is theoretically possible to attain a smaller mean-
square error by actually using two different transfer functions, in this
report we shall consider only cruciform missiles, so that the transfer
function is the same in both directiomns.

According to the discussion in the preceding section, we may assume
a beam attack, so that the y axis is parallel to the beam. ILet g(t,T)
denote the impulse response® of the missile-beam system. Then, the output

SThis response depends upon two variables since the system may, in
general, be time-varying.
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of the mlissile will be given by

T
‘/ﬂ g(t, ) [xg(T) + xyx(T)lar

(o]

xy(t)

t
zy (%) =f g(t,7)[zg(7) + zx(7)lar

[o]

We desire to minimize the mean-square error
E2 = Avlxp(t) - xM(t)]2 + Av[ngt) - zM('b)]2
A little algebra ylelds

B2 = qu(t,%) - 2fﬁg(t,T)ch(t,'r)d'r +
[o]

i t t
g(t,T) g(t,c) (T:G)dﬁ ar + N ga(t;T)dT » t=>0 (5)
[ s [t /

[¢] (o]

where equstion (4) has been used to give an expression for ¢yx. This is
e minimum (cf. refs. 5 and 8) if and only if

t
¢h(t’T) =k/\ g(t,d)gB(T,c)do + Ng(t,7) , for 0< 1<t (6)

(o)

where @ 1s glven by equation (3).

Equation (6) is an integral equation which must be solved for the
optimum impulse response g(%,T).

The Optimum

Although it 1s a lengthy procedure, the method of reference hy (or,
more easily thaet of ref. 5) can be used to solve equation (6). The opti-
mum impulse response one obtains is too complicated for there to be much
advantage in writing it down, especially since a slight approximation
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simplifies it enormously. This epproximation will be discussed in the next
section. One can say, however, that everything turns out to be a Ffunction
of the dimensionless time

t* = At (7

. (%i?)l/e (8)

The optimum impulse response g(%,T) can be used to compute the
minimum rms error Epip. Agein this function is rather complicated, but
figure 1 can be used to f£ind the minlmum error as a function of time when
the optimum missile 1s filred at a partlicular target. In order to inter-
pret figure 1, we note that the minimum error has been broken up into
four parts, a part ER which represents error due to initial error at the

time of firing, a part Ey due Yo nolse, a part Ey due to target veloc-
ity, end & part Ep due to target maneuver. The total error is glven by
the square root of the sum of the squares of these four quantities.

where

As can be seen from the figure, Ep end Ey damp out rather rapldly.

What remedins can be approximated quite accurately by its value at infinity.
One obtains from the filigure that

E(e)

Il

JENZ(“) + EgZ(e)

NE=TN (9)

This expression for the minlmum error is very important and will be used
frequently in the sequel.

AN APPROXIMATION

Equation (9) can be used as a.check on the performesnce elther of a
given missile or of one designed by any heuristic process whatever. To
see whether any missile transfer function, designed by whatever means 5
can be classed as "good" in the sense of this report, one has only to
check on two points. First he has to see that the rms error, when + = o,
1s epproached rapidly. This is always true of stable systems. Second, he
may compare the error of his missile with equation (9) to see how far from
the optimum he may be. .
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In vwhat follows we shall make frequent use of the expressions as "t
approaches Infinity" and when "t dis large." Actually, neither of these
is quite accurate, sinhce, of course, we shall never be concerned with
times greater then T, when the attack is over. What really will be meant
by large values of t are those values which, while less than T, are

still far enough from zero that the expression 1- e'wG mey be approximated
by unity. As can be seen from equation (8), N is not usually very small
and so "large values of +" may be quite closé to zero.

In this section, we shall utilize the above approximatlion to reduce
the formuls for the optimum system tc manageable proportions. DNow, it
happens that the optimum impulse response depends only on hyperbolic sines
and cosines of t* and v = AT. BExcept near zero time, however, the fol-
lowing epproximations are valid.

X

cosh X =s8inh X = = e" , x>0

o] ho

If these approximations are made in the expression for the optimum impulse
response and if only fairly large values of t are considered, one obtalns

the simple spproximetion - : _

(¥ (% 2 %_ %
& (t,1) = ne BT La?)e w(E*=r) La@s)e (%) (20
where A i1s glven by equation (8) and
in/s 1 . N3
= e = E + i —-2— . (ll)

Tt should be noted that since g*¥ is a function of t-1 alone, it
represents & time invariant system. Further, since the real parts of -p
and +u2 are negative, the system is stable. The transfer function corre-
sponding to the impulse response (10) is

Writing this in the form

l+2%s+-l—252

(L+m8){1+2 &i- 5+ —= SZ)
Ya
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one obtalns the values e

W, = A wd-:)\
N2 1
gn =72 gd.= 2

_‘
A
>

where A is glven by equation (8). N

The error corresponding to equation (10) can be computed by substi-
tuting (10) into (5). The exmct procedure for doing this for any time
inveriant system will be indicated later onj it suffices here to say that
the error corresponding to g(t,T) for large + 1s given again by for-
mula (9). Thus, although the error of this approximate system may be
larger than the minimum initially, this transient phase soon dies out and
the error for large t is compromised not at all. _

ACCELERATION DEMANDED OF THE MISSILE

We have thus far speclified an impulse response (lO), corresponding
to the transfer function (12), which has en associated error (9). However,
we have no guarantee that in order to achieve the performance indicated
by (9) the missile may not be called upon to attempt impossible exertions.
The rms acceleration of the missile, for example, may be required to be
so great that the controls of the actual missile will be at the stops all
of the time, thus making the linear snalysis used here invalid. The sys-
tem may, of course, be limited in other ways, but we shall comsider only
acceleration limiting as typical of the sort of situstion which arises,
and, in addition, as the most important type of limiting.

Now, whatever the Ilnputs and whatever the impulse response g(t,T)
may be, the mean-square acceleration demanded of the missile 1s

—_— \" o o 2
o = Av { aii; [ &(t,7) [x5(7) + xN(T)JaT} "

2 T 2
av {25 [ &(5,7) () + 2y Jar} (13)
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Define
xp(t) = x5(t) + xg(t)
(1)
z2(t) = zp(t) + z(%)
Substituting these definitions into (13) and differentiating, one obtains

S i 2
o = Av {g('b,t):kI(t) + [28(t,t) + &.(t,1) Ixp (%) +f g.b.b(‘b,T)XI(T)dT} +

(o]

17 2
Av {g(t,t)él(t) +[2g, (t,%) + & (t,t) Jz2(%) +f g,tt(t,T)zI(T)d'r}
(o]

vhere the subscripts on g denote partial differentiation.

Now let QkaI(t,T) denote the autocorrelation function of kI,
@ka (t,T) the cross-correlation function of iI with X7, etc. Then,
I

squaring and averesging, one obtains

t
[281"(1;'t)+&r(t,t)]e[%cer(t’t)szzI(t’t)]+2~[ 8(t,7) B(tjt)[Q&IxI(t:T)WiIzI(t)T):] +

- b b
[2st(t,t)+s,(t,t)][¢xf:1(t,-r)+q)zI,,I(t,-r)]}drr+ [ sbt(t,-r)[ sbt(t,c)[wxrxx('r,a)wzlﬁ(na)]da ar

(15)

Consider now the first bracketed term in this equation. It contains,
according to equations (14), a term involving the noise. This term is
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?gNkN(t;t)*'¢iNéN(t:t) = AY[*N(t)#N(T)+'iN(t)iN(T)]|T=t
32
= Avlag () xg(T) + 2x(t) zg(T) ]
oT T=t
92
"S5 cpN(t,'r) e (16)

Now, if the noise is white 1s glven by equation (4) and so (16)
P) s Py P

which is to be evaluated at T = t, is infinite. Even if the strictly
unrealizable assumption that the noise is white is not made, it can be
expected that this term will be unduly large. TIn arder to eliminate it
then, we set, according to equation (15),

g(t,8) =0 (17)
Similarly, the third bracketed term in (15) gives
2g(t,%) + g (6,8) =0 (18)

We now specify (17) and (18) as invlolable conditions which any satisfac-
tory missile must satlsfy in order that the missile ascceleration which is
called for be not too large. In this case, (15) gives for the acceleration
of the missile '

R - t -
ol __.[ g_b_t(t,'l'{[ gtt(t,o)[cpxlxl('r,c) + cpZIZI('r,c)]dc ar (19)

Let us see 1f the missile defined by the impulse response g¥ of
equation (10) satisfies conditions (17) and (18). We have from (10) that

1-p2 l+u>
¥ (& + =7\G_ —_— =
g (%5,t) TS

=%(5+u-u2)

= 2\
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since u = et™/3  The constent N # 0, meaning thet condition (17) is not
satisfied. - Thus, we may conclude that the acceleration demanded of the
system described by (10) will be so large that the system is unsatisfactory.

OPTIMIZATION IN THE PRESENCE OF CONDITIONS (17) AND (18)

We have seen that the system whlch has been derived turns out to be
unsatisfactory from the point of view of acceleration limlting. It appears
that we mlght proceed using the ideas of reference 9, minimizing not the
error, E2, but the quantity :

2, 7;;? . : (20)

where 7y 1is a constant. The ldea here is that when  y is large, effec~

tively we would be minimizing ey° while, when 7 is small, E° would be

minimized. Consequently, the thought is that there might be a value of y
which while keeping E2 near the minimum value (9) still does not allow

ay= to get too large. However, in our case, the quantity (20) has no

minimum, as cen be shown by a straightforward (though lengthy) computation.
Hence, we must proceed otherwlse. s

What we shall do is utilize a hint glven us by the form of g(%,T)
and gctuelly compute the error using formula (5) It will turn out that
conditlions necessary in order that E2 be small will then become evldent
by inspection.

The hint is that g(t,T) represents a time-invariant system, Thus,
if we decide to look only at time-invariant systems, we may expect, in
view of the fact that (12) is time-invariant to be able to come upon &
fairly good result. _

Optimization

Now, the most general time-invariant system has an impulse response
which is a sum of exponentials, provided only that the roots of the
characteristic equation are distinct.® Hence, we set

g(t,7) = g(b-1) = Zage a(®T) (21)

SEven if they are not, the form of the impulse response is a limit
of a sum of exponentials as the roots become coincident.
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We may now substitute (21) into the expression (5) for the error.
This procedure is simplified by breaking the error up into four parts,
as In figure 1. Thus, we define, according to the expressions (3)
and (4) for the correlation functions ¢ and gy,

—_—T 1] t b
Ex2(t) = R® {1 - 2/ g(t,T)dr +\én g(t,7)| g(t,0)do dw]
0 =F 2o [
N £ 2
=R |1 - g(t,T)ar
- [ etem]
_T 5 5 t
Ev-(t) = V& |t® - 2t Tg(t,T)dr +[ g{t,7)| g&(t,0)10 do 4t
-2 [ ]
— F t 2-
=V2 |t - Tg(t,T)ar
o/ ]
. > (22)
Ex (t) =N [ &(t,m)ar
[
2 = af ® 2. 3 4
B~ (%) = oom [Gts - %[ g(t,7) (L0t31° - 5tr* + °)ar +
t T
f g(t,T)f g(t,0) (10736 - 510* + 05 do dr +
(o] (o]
% 5
f g(t,—r)f g(t,0) (107362 - 51%c + °)do d-r‘]
(s} T

-

In equation (21), g(t,T) is a function g(%t-T) of the difference of
and. 7. This means that formulas (22) can be written
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ER?(t) = R2 [?.-~/Htg(T)dT]2
)

BO( =V {t[l 'ft E(T)dT] +ftTG(T)dT}2
(o]

[e]

t
EyZ(t) =N | &(r)ar
)

——

%
ExZ(t) = -l—Z-z—T 66 - 2f g(0) [ (t-1)° - 5‘b(‘b-‘r)4+l0'b2(t-'r)3]d:r +
[#]

1 T
2[ g('r)‘[ g(o)(e-7)° - 5(t-1)*(t-0) + 10(t-1)3(t-0)%1do aT}

Set -
5
I (t) =f Me(r)dr , n=0,1 ... (23)
o

Then

B2(t) = FE [1 - ()]
_ 2
B2(5) = 7@ 4501 - To()1 + :lm}

t
Ex°(t) = N g (r)ar
[

a2

Bg(Y) = Toop

{6t5 [1-T, (%) 124302 1-Io(6) 1T, (%) -

2 f i g(T) [75{1-10(1)}+ 511, (1) -107312(1):\&1}
(o]
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Now, if we are to set g(t) equal, as in equation (21), to a sum of
exponentials, and if the system is to be steble, all of the quantities
In(t) will approach definite limits as > «. Consider, then, the 5
term in the expression for EBZ. Since Io(t) approaches a limit, this

whole term will approach infinity as t-> « unless 1-I (w) = 0. This
gives us one relation which g(t) must satisfy:

Iy(w) =1 (ok)
Simllarly, the 3 term in Eg® glves

I,(w) =0 (25)
while the +t +term glives

Io(w) =0 (26)

When these conditions are satisfied, we can say that

Eg?(«) =0 \

By (x) =0

Bg2(e) = [ (r)ar yen
[

EBa(oo) = lZ(a)Tf g(T){Ts[l-Io(T) 1+ 5T4Il(T) - lO-rsIa(-r)} dar /
o

The acceleration (19) of the missile can also be broken into four
parts. Recalling that if g(t,t) = g(t-1), then 8 (t,7) = E(t-T), we
see that

_ t t
ag” =B | E(t-1)[ #&(t-o)do ar
[

5 -2

= R2 [[ é('r)d'r—

J— a2
_F [em - &(0)

=R & (t) (28)
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by condition (18), which reads, in this time-inveriant case,

g(0) =0 (29)
Similarly, (17) becomes
g(0) =0 (30)
and so one can write
ay = V&2 (%) (31)
by using condition (30). Also,
ay = N tfgﬁ(f)a-r (32)

Now, set

t
Jn (t) =f +E(T)ar

(2]

= t2&(t) - nt® " tg(s) +n(n-1)I,_,(t) (33)
Then, just as before,
—_— t
ag? = I.Zoz_m fs'(T)[é(c)[(t--r)s ~5(t-1) *(t-06)+10(t-1)°(t-0)*]do a7
o}

= % {6‘b5J02(t) '3Ot4J0(t)Jl(t)+20t3[Jo(t)J2(_b)+2Jl2(t) ] -

t
6Ot2Jl(t)J2(t)+3OtJ22(t)-%/hg(T)[sTsé(TjF15T4g(T)+20TSIO(T)]d{}
o)
From (33), however, we see that if the system is stable (so that
g(o) = g(w) = 0), then Jy(») = J,(w) = 0. Also, using conditions (24),
(25), end (26), we obtain Jy(w) = 2. Therefore, as t-> o,

— v -
;B—a(t) ~ %8% {GOt-Ef g(7) [GTsé(T)-15T4g(T)+20'rsIo('r_)_]d } (3k4)
[»] . .
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Now, let g(t) be given by (21). Conditions (24), (25), (26), (29),
and (30) then become

n_,

T\;-_l

8n

2 -0

A=

8n

2 =0 (35)

) Pt =
T

Notice that the first three of equations (35) are conditions for the error

not to be too large, while the last two are conditions for the acceleration
to be finite. Finally, we have

E? () = Ey°(w) + Ep®(w)

_\ _emfn (N+ a2/T
7‘m+7‘n Mo A

oy (% x° ) (36)
i3 Mn+ Mg 7‘m 7\:1

where® A 1s given by (8) and the sum runs over all m and n. Since we
still are interested in reducing E2 as far as possible;, the problem now
becomes one of minimizing (36) subject to the conditions (35).

4

Equation (21) can be substituted into (28), (31), (32), and (3k) to
yield an expression for the acceleration of the missile. Assuming sta-

bility, we see that a,RE and av2 quickly approach zero. On the other
hand,

%2(t) ~ a.N2 + 8;32 _

—_— A&
= a2 %+ N 7\:1_1:311 (7\m27‘n 7\m7\ ) (37
for large +. :

“An alternative formulation of formulas (36) and (3"() is given in
the appendix.
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It is very important to notice that there are infinitely many systems
satisfying conditions (35). In fact, even if a characteristic equation
(of sufficiently high order, see below) 1s given for the determination of
the roots N,, there still exists a system (perhsps meny such) satisfy-
ing (35). To see this, conmsider the A\,'s as fixed. Equations (35) then
give relations among the a,'s. These, however, determine only the numer-
ator of the transfer function. Hence, we can say that given a denominator
one can find a corresponding numerator such that the system satisfies (35).

This result shows that not only can one use the ideas discussed here
to design a missile but that one cen very easily add a compensating net- -
work to an existing system so that the new over-all system wlll satisfy :
the conditions (35). This follows from the fact that equations (35) only
give relations among the ay's. Further, since the N\,'s are still arbi-
trary, they remein as parameters with respect to which the error (36) can
e minimized.

The Transfer Function

Conditions (35) mey easily be interpreted as conditions on the
transfer function G(s) corresponding to the impulse response g(t). In
fact, since -
Mt
g(t) = Zape Mo

we have

8n
G(S) = Z S+7\n

Consequently, the first three conditions (35) Pecome

g(o) = 1
¢'(0) =0 (38)
¢"(0) =0

Congider next the last two of equations (35). They say that
g'(0) = g(0) = 0. As is well known, however, this can only be so 1f the
order of the denomlnator of g exceeds the order of the numerator by at
least 3. Thus, we need only add the relation -

(order of denominator of @) - (order of numerator of G) >3 (39)

to equetions (38) to assure ourselves that all of equations (35) are
satisfied.
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Now, suppose
P(s)
a(s)

where P and @ are polynomials of order m end n, respectively. Equa-
tion (39) then reads

G(s) =

n-m23 (ko)
while equations (38) become
P(0) = q(0)
P'(0) = Q'(0)
P"(0) = Q"(0)
Thus, equations (38) are satisfied if the first three terms (i.e., the
constant, linear and quadratic terms) in P(s) and Q(s) are equal. Ve

mey, by dividing through by the constant, assume 1t to be unity and say
that conditions (35) will be satisfled if G(s) has the form

T

lia, s4ass2+8> ZBVSV
=

140, 840585482 ) cpyaf’

Gg(s) = (41)

V=0
and (40) holds.

Note that it follows from (40) and (41) that the order of the system
is at least 5, since obviously, in view of (40), the lowest order system
will occur if m = 3 and Bg = O - in which case, again by (40), n must
equal 5, at least.

SOME OPTIMUM TRANSFER FUNCTIONS

In this section, we wish actuelly to display some systems satisfylng
conditions (35) and minimizing (36), in order to show the effect on the
mlsslle acceleration.

As shown in the preceding section, any such system must be of the
fifth order, at least. For simplicity, we shall only consider systems
with this minimum order. Thus, according to equation (41) and the remerks
following, we write
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2
l+mls+a2s

G(s) = (42)

2 3 4 s
Ltary B85 +Hg 87+, B 545 B

We know that the impulse response corresponding to (L42) satisfiles (35) if
ag # O. Notice that, except for the further conditlon of stablility, the
five constants a are free and cen be used to minimize (36). It is pos-
sible that with so much freedom, the error (36) - even when the constants
an &are subject to conditions (35) - can be reduced to the sbsolute minimum
error (9). However, the minimization of (36) in this way 1s extremely com-
plicated and the problem probably can only be solved by use of a method
such as steepest descent (ref. 10) on a digital computer. Here, we shall
solve a much less ambitious problem; however, we shall show that in order
to reduce the misslle acceleration very greatly, a large penalty in
increased error need not be paid.

What we shall sctually consider are speclal cases of (42) having the

form
S
l+2(l+8>-+2< E 7\—2

a(s) : (43)
DT

where, as before, A 1s glven by (8). The transfer functions (43) depend
on & parameber p. Notice that as B> o, (43) reduces to the optimum
transfer function (12). Thus, for large B at least, one may expect
the error corresponding to (43) to be somewhere in the nelghborhood of
the minimum error (9).

The actual error of the system (43) can be computed with the aid
of (36). The computation, though long, is not impossible, and the final
result is glven in normelized form in flgure 2. Note that as predicted,
the curve is fairly flat, except at the very left-hand end.

In order to understand what signlficance the magnlitude of B has,
it 1s necessary to look at the mean-square acceleration of the missile.
This wes computed, using (37) with +t=T (the worst case). The result is
shown in normelized form in figure 3 (the source of the parameter used as
ordinate can be seen in the appendix) Figure 3 also contains the curve
of figure o, Lo e O e S,
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Figure 3 represents the climex of all our efforts. In order to use
the figure, one would have to declde what the rms acceleration capabllities
of the milssile were to be. Using this knowledge, one finds the appropriate
(a.M2 - a.2)/N7\5 and reads off the corresponding value of absclssa . This

value of B is then used in equation (43) to give the optimum transfer
function. The error corresponding to this system is then read at the same
value of P. An example of thils is given in a later section.

The Error

The error of the system (43) is plotted against the dimensionless
missile acceleration parsmeter A = (g2 -aZ)/NA° in figure 4. Notice

that the error E 1is determined by only two things, the minimum error
Eyin @and this parameter A. An advantage of the present applications

of the method of “optimization® is that the parameters of which E is
a function are determined analytically.

Note further that over what might be conslidered some reasonable range

of A - say, those values corresponding to the lini_;ts k< ,/ a.ME/a? <7,

a condition which with a "reasonable™ choice of a2, N, and T i1s the range
bounded by the dotbted lines in figure 4 - the slope changes slowly. One
of the principal advantages of the present outlook is that the curve of
figure 4 gives the error over the practical range of A uniformly.

AN EXAMPLE

As an example of the use of figure 3, consider a target having the
following characteristics®

a2 = 32.2 £t/sec®
N = 100 £t2sec .

SThe value of N given here is a reasonable one and is consistent
with that used in earlier reports. In reference 1, for instance, the
velue of "noise magnitude" which was used was 15 f£t2/radian/sec; since
our definition of N differs from that used in reference 1 by & factor
of 2x we have set N = 2x(15) = 100.
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Let us assume that the time of flight T i1s 10 seconds, and that the rms

value of missile acceleration

will be Tg's, so that

/;;2 = 225 ft/sec?

We then have

—_\1/8
- (22
7“(NT)

Also,

ayE -

1.00

a®
e~

Hence, reading along the dotted lines in figure 3, we see that we must

choose B = 8.6, which gives

and, since -

we have

With B = 8.6 and A

8 value of the error of

E =1.19 Epyp

Emin = N2NA
= 14,1 £t

E = 16.8 £t

l+2.23s+2.h982

G(s)

(1+8) (L+s+82) (140.238+0.0275%)

(k)

1.00, the transfer function (43) becomes

(45)

In the attack situation described, the system having the transfer function

(45) will have the error (4k).
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CONCLUDING REMARKS

It has been shown how a beam rider missile system can be designed in
an optimum way even when a target maneuver is a strictly nonstationary one.
The maneuver wag chosen here to be a step in target acceleration, the step
being assumed to occur with equal likelihood anywhere in & finite interval
of time. A simple formula was derived for the minimum error in these cir-
cumstances; this formula can be used as a criterion of merit agsinst which
the value of any beam rider, designed by whatever mesns, can be measured.

The optimum control system was shown to be unsatisfactory since the
accelerations demanded of the missile were wnduly large. Therefore, it
was necessary to design 1t in a different way, teking into account the
limited acceleration available to any real missile, and using the minimum
error formula to decide how good the new system was. Two things resulted
from this analysis. The first was the conclusion that the transfer func-
tion of any missile guidsnce system must be of a certain form (given Dby
egs. (40) and (41)) if elther the missile acceleration or the miss distance
is not to lncrease beyond all bounds.

The second result wes presented in figure 3 and equation (43). Fig-
ure 3 may be used as a design chart to determine a satisfactory system
transfer function in any given situation. Thus, having decided just how
much acceleration the desired missile would be able to withstand, the
designer can use figure 3 to determine a corresponding value of a cexr-
tain parameter B. The transfer function is then determined by means of
equation (43). The error of a missile system with this bransfer function
mey then be read off figure 3.

Finally, the curve of error versus a dimensionless acceleration
parameter - which is the only thing which determines the error - is
glven.

Ames Aeronautical ILeboratory
Netlional Advisory Committee for Aeronsutics
Moffett Field, Calif., Sept. 30, 1957
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APPENDIX

ALTERNATIVE FORMULATION OF EQUATIONS (36) AND (37)

In order to evaluate any system, it is necessary to calculate the
error corresponding to it (of course) and its rms acceleration. With
the proviso that conditions (29) and (30) hold, formulas (36) and (37)
of the text can be used for this purpose. However, it is simpler compu=-
tationally to consider a transformed version of these formulas. This
version is described below. ' :

Consider equation (36). We have

EmPn N
Ez(oo) = NZ _)\m+_/\n (l + ﬁ)

m,n
B 28 (Mg ) B
= Nr;l a.ma.n[(l + ——7\m37\n§) -e at |

Il

2 2
“A.t “ME
me ape M), e z_j'g_eﬁn dt
) An®

end in view of equation (21),
(22)

=N f [62(t) + A®n2 (%) ]at

[e]

where
h(t) =z is e-7\n'b
An
Novw, by a well-known formuls for Laplace transforms (ref. 11)
00

10
f &£(t)dt = z—ln-i-f C:fr(S)G(-S)dS_ |

[+ ~1oo -
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vhere G(s) is the Laplace transform of g(t). Also, again by (21),

B(t) = = f (6-7) g(r)ar
T

Consequently, the trensform of h(t) is

o
2 1 8t
H = )| 2= - L 4 —-&8__|dt

_gno) e (o)  a0) _ G(s)
28 " 82 * g3 g3

27

However, as shown on page 20, conditions (35) entail (38), so that if

conditions (35) are valld for the system under consideration,

H(S) = _l-:-és)

Also,

. o
fha(t)dt=§d-f H(s)H(-s)ds

(o] ~ico
Therefore, f£inally,
2 v 1-G(s) 1-G(-s)
[0} = e - - 8 — =
B2(e) - [ [te)0(-0)-rp 2o80), 28C |

2l T g3
=10 ~dco

by virtue of the definition (8) of .

o0 — o0
N 1 a2 1-G(s) 1-G(-s) .
é-ﬂ—j-_. f‘i G(S)G(-S)ds - —— ds

s3

(A1)
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In a similar way, it can be shown that equation (37) is equivalent

to
i
af(1) = 2 4 2 f [s‘*@(s)G(-s) - e 28le) 1’62'8)] as (42)
=100
—= 1 1 1 _a(s) 1-G(-s) x
= g [l - EE f 5 S d.S] + 2—1_&- f S4G(S)G(-S)ds
= ~J.00

(A3)
provided agein that (29), (30), and the first of equations (38) hold.

The integrals occurring in equations (Al) and (A3) can be evaluated
immediately by means of the tables E.2-1 in Appendix E of reference 12.

One further point which might be made is this. It is easy to show
by use of equations (A2) where the parameter (ey=-a2)/NA® came from.

Notice that in equation (43) that G(s) is really a function of s/\, so
that G(As) does not involve A explicitly at all. Hence, writing s =2Ap

in (A2) and ebbreviating &2(T) to a2, we obtain

— 1o
o =+ / [p"*G(xp)G(—Mo) - 1500) l'G(;‘P)] ép
P 1)

or

—_— 1o
- L [P4G_(7\P) &(xp) - 1-@1()7@) 1-@(};7@)] -

)

where the right-hand side is in a normalized form and, contrary to
appearances, does not contain any of the parameters a2, N, T, or A.
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